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Abstract—We developed a model to estimate forces on ogive-nose penetrators luunched into
reinforced-concrete targets. Post-test target observations and triaxial tests on samples cored from
concrete slabs guided the model development. The cylindrical. cavity-expansion approximation
simplified the analysis to one-dimensional, radial motion, and an iterative procedure provided the
solution technique for the partial differential equations. Graphical results show forces on nose
shapes for a practical range of penetration velocities.

INTRODUCTION

Studies on penetration of non-deforming projectiles into concrete and geological targets
usually focus on the prediction and measurement of penetration depth or deceleration
history[1]. Theoretical models use solution techmiques that may be grouped into three main
categorics : empirical equations fit to test data[2]: models that approximate the target
response by one-dimensional motion using cavity-cxpansion methods[3]: and wave-code
analyses[4).

For this study, we used the eylindrical, cavity-expansion approximation. As shown in
Fig. 1, this approximation idcalized the target as thin, independent layers normal to the
penctration direction and simplified the analyses to one-dimensional motion in the radial
direction. Triaxial material tests[S] on samples cored from concrete targets used for full-
scale, penetration tests guided the choice of constitutive models. Figure 2 shows pressure-
volumetric strain and shear strength — pressure data for conerete samples that were tested
at 4, 24, and 48 months, We approximated these data with a lincar, pressure -volumetric
strain relation and a constant, shear strength (Tresca) failure criterion.

Post-test, reinforced-concerete targets have a conical shaped entry crater followed by a
tunnel with nearly the same penctrator diameter. Crater depths are usually one to two nosc
lengths depending on the location of the reinforcing rods from the free surface of the targets.
Although we have no available penetrator, deceleration-time data for reinforced-concrete
targets, deceleration-time profiles for rock targets[1] show a monotonic rise to a peak value
at about the time the tunnel is developed. The cylindrical, cavity-expansion assumption
approximates this tunncl phase of penctration. In addition, we assumed that the only
function of the reinforcement was to prevent radial cracks from circumferential tensile
Stresses.

Earlier penetration models{6-8] used the locking-solid approximation to represent
pressure-volumetric strain data. However, Fig. 2 shows that this relationship is ncarly
lincar for pressures to about 400 MPa. If, however, pressure-volumetric strain data for
different target materials indicate that the locking-solid approximation may be adequate,
closcd-form equations that estimate forces on conec-nose and ogive-nosc penetrators are
available. More recently, Forrestal{l] derived closed-form equations for the motion of cone-
nose penetrators into targets described with linear, pressure -volumetric strain relations.
Within the framework of the cylindrical, cavity-expansion approximation, conc-nosc pen-
etrators produce constant, cavity-cxpansion velocities and permit the use of a similarity
transformation. This transformation reduces the partial differential equations that govern
radial motion to ordinary differential equations. The resulting differential equations are
solved numerically[9] or in closed form with an iterative technique[l].

t This work was supported by the U.S. Department of Energy.
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Fig. 1. Geometry of ogival nose and target response regions.

Ogive-nose penetrators (see Fig. 1) do not produce a uniform cavity expansion. There-
fore, the governing equations cannot be reduced to ordinary differential equations with a
similarity transformation. Thus, for this study. we solved the partial differential cquations
with an iterative technique. In the following sections we derive expressions for forces on
ogive-nose penetrators as a function of penetration velocity and present paramctric results
for several ogive-nose shapes.

PROBLEM FORMULATION

A rigid projectile with an ogival nose penetrates a uniform target at normal incidence.
As shown in Fig. 1, the problem is axisymmetnic and simplified further by using the
cylindrical, cavity-expansion approximation. The ogival nose traveling at penctration
velocity F opens a circular cavily in a target layer at time ¢ = 0. Figure | shows that un
ogive is the are of a circle with radius s and is tangent to the cylindrical aft-body. The nose
shape specifies the cavity radius ry and the cavity-expansion velocity dry/de. Thus
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Fig. 2. Triaxial data[]: (a) pressure—~volumetric strain ; (b) shear strength-pressure.
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where £ is the nose length and « the aft-body radius. It is common to define an ogival nose
in terms of cultber radiug head

CRI = 5 2u. {lo)

Next, we approximate the ogival nose and cavity-expansion velocity with the poly-

nomud approximations
( L1y .
ro= ot \i - 5 (2}

i.
R B (2b)
dt
17
7= . {20y
Nt

The constant % depends on the nose shape (CRH ) and is obtained from the initial condition
that the cavity starts with zero radius. An additional criterion requires that the cavity-
expansion velocity vanishes at a nose fength of penctration. Figures 3(a)-{c) show that this
polynomial expression is accurate.
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As shown in Fig. 1. cylindrical cavity-expansion produces two annular response
regions—a plastic region next to the cavity wall and an elastic region. The plastic region is
described by linear fits to the triaxial test data (Fig. 2). Pressure-volumetric strain and the
Tresca vield eniterion are

P = K(l —po/p) = Ky (3a)
o, —~0y =Y (3b)

where p is the hydrostatic pressure; p,. p are densities in the undeformed and deformed
configurations: # is the volumetric strain: a,. g, are radial and circumtcrential stress com-
ponents (positive in compression); and Y s the flow stress. The elastic region has bulk
modulus K and Poisson’s ratio v.

The plastic region (Fig. 1) is bounded by the radn, r (1) and r,(r) : where £ is the radial
Eulerian coordinate: ¢ is time; and dr.(¢)/d¢ is the propagation velocity of the elastic-
plastic interface. Equations of mass and momentum conservation in cvlindrical Eulerian
coordinates are

p 10
o Hrpy =10 (4a)
ftoordr
’o, N a,— 0, Jr . or b
T = _g .
or r M o or )

where ris the radial particle velocity (positive outward). As suggested by Thll[10], the axial
stress is taken as g, = (o, +a,)/2. Thus, pressure becomes p = (a4, +a,)/2. Next, the non-
lincar cquations for the plastic region are combined to climinate . p. The resulting two
cquittions in a, and r are

AL D (5a)
= . Sa
o r K(t—-m\ &t "o
da, Y —~py {00 ar R
AUV A AT 5h
or + ro (= \ ot + o o)

Post-analyses evaluation and the data in Fig. 2(a) showed 4 small compuared with unity.
and (1 —#n) is replaced with unity in eqns (5a) and (5b).

The clastic region (Fig. 1) is bounded by the radii ra(r) and ¢yt where ¢ is the clastic,
dilatational, wave velocity. We are primarily concerned with calculating radial stress in the
plastic region at the cavity wall in order to obtain penctration resistance. To caleulate
penetration resistance, only radial stress and particle velocity in the elastic region at the
clastic- plastic interface are required. In addition, we approximate the elastic-intertuce radial
stress and particle velocity with the functional forms derived for quasi-static sotutions{1. 10].
We show, later, no loss in accuracy with this approximation. Thus, the clastic radial stress
at r=r,is taken as

Y W’ l+(t~n[/3)‘3]}
- . o e . 62
o, 2{!«%(‘“2“)(‘_%1)” ln[ " (6a)
where
I dr, , M 3 —v) . K
= e e RO B = 61
¢y dr’ G C’[ (1+v) ] Cr o (6b)

and the elastic particle velocity at r = ry 18
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(l + V) Y dr 2

vy = vl =] —. (6¢)
31—2v)\K/ dr

The elastic and plastic regions are linked with the Hugoniot jump conditions that
conserve mass and momentum across the wave-front. These mass and momentum conditions

are
df dl’:
Pp(!’v - "a;z’) = Po(’»’e - Z‘I?) (7a)

df» dh
Op+Polly ("v - "&T‘) =0+ Pl ("e - E!:) (7b)

where o, and ¢, are the plastic-interface radial stress and particle velocity, respectively. In
eqns (7a) and (7b). p, = p, because p = 0 in the elastic region[10].
Net axial force is derived in Ref. [8] and given by

dr 4 (8)

L4
=2 ,
F: RLo(r!)rld:

where ry is given by cqn (1a) and z = y corresponds to the axial position where the target
separrates from the ogival nose.

SOLUTION PROCEDURE

For convenience, we introduce the dimensionless variables

o, Y
‘z N ”= l;
$ K’ ! K (1)
r | dr Ve
= - = e e Y = - D
E=p =gt T 098}
U e, Vo = V O¢
- V' /vp—cpv "'\l—'(—‘d (L)

where a dot refers to differentiation with respect to t.
Boundary conditions at the cavity wall and field equations for the plastic region
transform to

Ei(t) = apr(l —1/2) {10a)
¢i(1) = ap(l—1) (10b)
Ay = ! .
o—-;:‘; {(10¢)
and
w. u_ ("S U‘7_5> e
F dt * & (1)
as T el v
5‘5‘!"&:—- —lp(g-é-{f—é—é—__-). {l1b)

SA5 M.y



N2 M. 1 FORRESTAL e¢f ul.

Boundary conditions for the plastic region at the elastic-plastic interface are obtained
from eqns (6) and (7). The dimensionless radial stress and particle velocity in the plastic
region at the elastic~plastic interface (7 = Z.) are

Sl 1+ (1-y )“} ,
e z{i IESOTTEATT [ “MJJMW], (123)

) ST {1+ ey’ +(1=g7) " ;
P 2t e S . 12
U (1—2\'){ 3 ZH—!/J“)"(I——;:A“(')‘)m [ W (12b)

in which

(t+wT .
p o= - = J1dy 2¢
@ =30 Lo =304y (12¢)

Solutions to the non-lincar, partial differential equations, eqns (11a) and (11b), are
obtained with an terative procedure. First, set the right-hand side of egn {11a) to zero and
solve for U

U'Eny = flod . (13a)

The function f(1) is evaluated from the boundary condition at the cavity wall U = &, 1)
== 5 From egns (10b)y and (10¢)

U'E Ty = A8 (13b)

A= a4 Loy, {13¢)

f

Next, substitute egn (13h) into the right-hand side of eyn (1) and integrate, This first
approximation to radial stress s

‘ . o A
SUE D =S, H(T+4:8) In (“‘,,‘)4— L’ ( - ,_‘) (14a)
S &<
B =il —3c+10). (14b)
As with egn (13a). integration ol cqn (11b) yields it function g(z) that is evaluated with egn
(12a).
This procedure is repeated to obtain the second approximations to particle velocity

U and radial stress §' The integration functions f(1). g(t) are evaluated with the jump
conditions, egns {12a) and (12b). Thus

M., M AV M .
UNS )y =M+ |+ :“ +in(‘:’) <;AI4+ f) (13)
S

b b3 »

S DY SV PR |
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in which M, and N, are functions of ¢
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J G2 §3 G2
I - 2 . Te ;= « <% J.:A A:
M, = U, +E:S, + AT+ By —33:(4p%) (1 = D)+ Az A| B— : —Eg {(17b)
M,=1i4" (I7¢c)
M= i) (1—1) (17d)
M= —A(T+24:B) (17¢)
and
i 1 .
Ny=§- —Uhp o) = —[EA(T+21B)~ —6&,(Ap20)* (1 = 1))
-~ w2
1
+ ozl EUT+AIBY— 4B  +3Ax) A1 =1)]
£ 4 x 2 3‘:’Er* :
A A B E ,;Jt} (150)
é: [
N, zs:u‘,+:20,,+‘;:(vs +303,20) 1+ MG +ED (T+ 43 B)
+ 33808, = 3(Apa) (1 = D)+ LA [B7 = 3ag A1 - 7))
1., , e E-38 284
-, | 2T+ 3&,:13)+~2,;A(§:- 22 . - 5:': )] {(18b)
by 2 52 62
Ny = 18 (18¢)
Ny = =iy (18d)
Ny= = 2B =33 A1 =]+ TB). (18¢)
As discussed by Hunter[H], the clastic-plastic interface velocity &, depends on the

cavity-expansion velocity &,. This interface velocity is calculated from the boundury con-
dition at the cavity wall

UG =¢&.0=2¢ (19)
where &, is given by eqn (10b).

After rearrangement, egns (10b) and (19) are written as an explicit, ordinary differential
equation in &,

v 1 A=E,U, 5,(T+FB)
= omm . 4 3(A a —_ ) e Z
5 DEN{[cs C (a1 — Loy FG (== T
(Apto) A2 =51+ 177 ) gAlA7
- 23 24

+ A{T‘*'(f' 29)° (1"‘ l‘ T+ uf:)} in { ¢, ]}

-
[E3—(r2a) (1 = 0)7] t2o(1 — 17) (202)



X4 M. 1. FORRESTAL e¢r al

Ty, { 2 1+ (20
401 =20 (1 —¢ ) [1 = Coa,0)] [(H—¢) 1 = (2 h0)]

RN
x in [l+(l¢——*¢) ]~l}. (20

The numerical solution procedure for this ordinary differential equation is described in the
next section. Solutions of &., &,. and &, are used to evaluate the radial stress on the ogival
nose S' (& = F,.1) in eqn (16). When §' (& = &, 1) becomes zero, the ogival nose loses
contact with the target.

As discussed by Hunter{l{]. we must also show that work performed in the plastic
region is everywhere non-negative. From the procedure outlined by Hunter[1 1], this con-
dition is given by

DEN =

2
4

~

@

=0 for ¢, <<, 20

¥

ety Ly

-~
pt
v

We show later that this criterion is satisfied for the applications of this study.
In terms of the dimensionless variables, the net axial foree on the ogival nose, eqn (8),
18

bl

F. = 2na’ K(ACRH — nj SUELDEE, do (22

i

where CRH is given by eqn (1¢) and « is the dimensionless time at separation.

Projectile velocity ¥ and cavity-cxpansion velocity decrease with penctration depth.
At the end of the trajectory, data{l] from instrumented tests show deceleration jumps from
i finite value to zero. Thus, for arbitrarily small velocity V| there is a finite, quasi-static
foree on the penctrator nose. Quasi-static, radial stress from a cylindrical, cavity-expansion

analysis[1] 15
, T T6(1 -2v) «,
S, = : RAT
S =, {1 +In [(5~4»')7'J} (23)

and the quasi-static, axial foree is
F., = na*KS,. (23b)

This closed-form expression F., provides a check for the numerical evaluation of eqn (22)
for ¥ approaching zero.

NUMERICAL EVALUATION

For this study, we focus on the radial stress distribution on the nose and axial force.
S'(&. 1) and F.depend on the elastic-plastic, wave-front location &,, where £, is in the form
of a non-linear, differential equation. Because &, is singular at © = 0, the solution in the
neighborhood of the nose tip (v € 7, = 0.001) is computed by neglecting the second term
in eqn (2a) that reduces the solution to that of a conical nosc given in Ref. [1]. An outline
for the computation for r 2 0.001 is:

(1) solve the differential equation for &, given by eqns (20),

(i1} numerically evaluate 2, that is involved to compute S'(E = &, 1) inegn (16) (the
involvement of T, arises from §,,. see eqn (12a), and N, and N, egns (18a) and (18b).

(iti) compute S' (& = &,. 1) and continually monitor to ensure the values arc positive ;
as previously mentioned, the target separates from the nose when radial stress becomes
tensile, and

{iv) compute axial force in eqn (22).
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Fig. 4. Comparison of radial stress at =/l = 0.01 for a 6.0-CRH ogival nose and a conical nose that
neglects the second term in eqn (2a) penetrating reinforced concrete with ¥ = 95 MPa.

The ODE code RDEAM][11] can solve the differential equation in eqns (20) while
scarching for a root of the S' function. However, a complication arises in that Z, is needed.
We decided to obtain this quantity through a numerical procedure rather than by the
complicated, analytical process of differentiating the differential equation, eqns (20). A
natural approach is to use the underlying polynomial interpolants in the Adams integration
methods used by RDEAM. This ncecessitated a modification of the output interpolation
process to provide an approximation to the next higher order derivative. Since the integrand
function for the axial force in egn (22) depends on the initial-value problem solution and
its derivatives, it is most convenient to perform the quadrature of the foree integral as an
initial-value differential equation. However, because this foree integral also depends on 85,
which is approximated by the output interpolation process in the modified RDEAM, this
equation cannot be carried along simultancously with the differential equations for &,
Rather, another integration code must be utilized for this separate task. A one-step method
is the most appropriate in these circumstances ; the Runge-Kutta code DERKF[13] was
utilized.

In summuary, following a successful step by the root-solving ODE code (which then
defines the interpolant used in approximating 2,, &5, &5, and &, over that step), the Runge -
Kutta method advances the foree integral computation over the very same step. This
procedure is continued until the root ¢ of $'(1) = 0 is encountered. At this time, the desired
torce integral evaluation is completed.

NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results for rigid, ogive-nose penetrators and a
concrete target. Figure 2 presents pressurc-volumetric strain and shear strength-pressure
data, and eqns (3a) and (3b) model these data. The 4-month concrete is described by
Po=220x10"kgm ", K=9.0GPa, Y =95MPa,v=0.27,andc, = 2020 ms~".

Figurc 4 shows radial stress vs penctration velocity from three calculations near the tip
(z/{ = 0.01; Fig. 1) of a 6.0-CRH nosc. The conical nose results[l] neglect the second term
in cgn (2a) and are the exact solution from numerical evaluation of a non-linear differential
cquation and a closed-form, iterative solution. Figure 4 shows excellent agreement between
the conical solutions and very close agreement between the conical and ogival solutions.
This close agreement is a check on the numerical procedure described in the last section
and offers justification for approximations (6a) and (6c) used for the elastic stress and
particle velocity at the elastic-plastic wave-front. We attribute the small difference between
the conical solution and the ogival solution with = = 0.0! to the elastic, wave-front approxi-
mations. In addition, close agreement with the exact, conical solution justifies the iterative
procedure used to obtain the ogival solution.
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Fig. 6. Criterion of non-negative plastic work Tor 6.0-CRH ogival nose penctrating reinforced
concrete (Y = 9S MPayat 10 m s

Figure 5 shows the radial stresses vs penctration velacity at several locations on a4 6.0-
CRH nose. Fora given V, radial stress is @ maximum at the tip and decreases as o7/ increases.
For i approaching zero, all values of §' approach the quasi-static solution (23a).

Figure 6 shows three contours at fixed t of ((U'/E)—(2U'/¢E)) in the plastic region
for a 6.0-CR# nosc traveling at Fie, = 0.5 (V= 1010 m s 'y, These contours show that
the criterion for non-negutive work, inequality (21), is satisfied. These are just a few examples
that show this criterion is satistied, but we made sufficient checks for other parameters, and
we feel confident this criterion is satisfied for the applications given in this study.

Figure 7 predicts axial force vs penetration velocity for several nose shapes. As indicated
by eqn (l¢) and Fig. 1, smaller values of CRH represent blunter noses. Forces on all noses
approach the quast-static value for small ¥, and blunter noses have larger forces as V
increases.
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Results in Figs 4-7 are presented for a practical range (0 < V/¢, < 0.5). For this

conerete. ¢, = 2020 m s~ and 0 < V" < 1010 m s~ ', As discussed in Ref. [1]. ficld tests

with instrumented penetrators can be conducted to ¥ =600 m s~

In addition.

S'=a!/K reaches a value of 0.056 at the nosctip for 1= 600 m s '. From eqgns (3a) and
(3b). p/K = S'—T/2, and the corresponding pressure is 450 MPa. As indicated in Fig. 2,
the pressure ~volumetric strain data starts to deviate from our lincar assumption at about
this pressure.
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